Nitric oxide and membrane lipid peroxidation in photosynthetic and non-photosynthetic organisms under several stress conditions

نویسندگان

  • Andrea Galatro
  • Paula M. González
  • Gabriela Malanga
  • Elizabeth Robello
  • Natacha E. Piloni
  • Susana Puntarulo
چکیده

INTRODUCTION Oxidative damage to lipids was characterized in terms of the nature of the oxidant, the type of lipid, and the severity of the oxidation (Simontacchi et al., 2011). Even though malondialdehyde detection with the thiobarbituric acid reactive substances test (TBARS) is the most currently used assay for the determination of lipid oxidation, it is unspecific since the reaction can be reproduced by other biological compounds (Simontacchi et al., 2011). On the other hand, electron paramagnetic resonance (EPR) spectroscopy showed the capacity of detecting the presence of the lipid radicals (LR•) formed during peroxidation, by yielding unique and stable products with spin traps (Malanga and Puntarulo, 2012). Nitric oxide (NO) is recognized both, as a signaling molecule that regulates many enzyme activities, but as a toxic agent as well. It has been found that NO is able to protect animal and plant cell types from oxidative damage resulting from superoxide (O2 ), hydrogen peroxide (H2O2) and alkyl peroxides by acting as a terminator of free radical chain reactions (Wink et al., 1995, 1996; Yalowich et al., 1999; Beligni and Lamattina, 2002; Sharpe et al., 2003). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) interact through the reaction of O2 with NO, to generate peroxynitrite (ONOO−) at a rate close to diffusion. ONOO− acts as both, a nitrating agent and a powerful oxidant capable of modifying proteins (formation of nitrotyrosine), lipids (lipid oxidation, lipid nitration), and nucleic acids (DNA oxidation and DNA nitration) (Gisone et al., 2004). The purpose of this commentary is to point out that NO complex interactions with other cellular components lead to a wide range of effects depending on the biological system under study and the oxidative stress condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Exogenous Nitric Oxide on Germination and Physiological Properties of Basil under Salinity Stress

Nitric oxide (NO) is a bioactive molecule, which was found to have several physiological roles, including antioxidant. To have a better understanding of the effects of NO concentrations (0, 0.1 and 0.2 mM) on germination, growth, photosynthetic pigments, lipid peroxidation and antioxidant activity of basil (Ocimum basilicum L.) under different salinity concentrations (0, 100 and 200 mM of NaCl)...

متن کامل

The Roles of Selenium in Protecting Lemon Balm against Salt Stress. Ghader Habibi* and Somaie Sarvary

Plant metabolism and productivity is influenced adversely by salinity. Exogenous selenium (Se), applied as sodium selenate in biofortification programmes, has been found effective in alleviating the salt induced damage in plants. The study was conducted in order to determine the effects of exogenous Se supply (10 μM) on the resistance of lemon balm (Melissa officinalis L.) plants to salt stress...

متن کامل

Effects of Copper Heavy Metal and Interaction With Nitric Oxide on Growth Parameters, Photosynthetic Pigment, Soluble Carbohydrate Content and Antioxidant Enzymes in Portulaca oleracea L. Ferdous Fendereski, Mahlagha Ghorbanli* and Arian Sateei

Copper is one of the heavy metal in plant that causes toxicity at high concentration via producing reactive oxygen species. Nitric oxide can protect cells from oxidative stress produce by reactive oxygen species. Effect of different concentrations of copper (1000, 1500 and 2000 μM) and interaction with nitric oxide (100 and 150 μM) were studied on growth parameters (shoot and root length) and s...

متن کامل

بهبود رشد گیاهچۀ توتون (.Nicotiana tabacum L) در شرایط تنش خشکی تحت تیمار متیل جاسمونات

Application of some chemical components including plant hormones such as methyl jasmonate causes resi-stance to increase in environmental stresses. In this study, the effect of metyl jasmonate in different concentrations (10, 20 and 30 uM) on the elevation of the plant resistance was investigated in drouht stress. Tobacco seedlings were studied under drought stress caused by polyethylene glycol...

متن کامل

Isoprenoids: an evolutionary pool for photoprotection.

Plants have evolved several mechanisms for getting rid of excess energy in photosynthetic membranes, some of which involve isoprenoid compounds. In all photosynthetic organisms, the carotenoids beta-carotene and zeaxanthin, and tocopherols serve an important photoprotective role, either by dissipating excess excitation energy as heat or by scavenging reactive oxygen species (ROS) and suppressin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013